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Numerical study of surface-induced reorientation and smectic layering in a nematic liquid crystal
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Surface-induced profiles of both nematic and smectic order parameters in a nematic liquid crystal, ranging
from an orienting substrate to “infinity,” were evaluated numerically on the basis of an extended Landau
theory. In order to obtain a smooth behavior of the solutions at “infinity,” a boundary energy functional was
derived by linearizing the Landau energy around its equilibrium solutions. We find that the intrinsic wave
number of the smectic structure, which plays the role of a coupling between nematic and smectic order,
strongly influences the director reorientation. Whereas the smectic order is rapidly decaying when moving
away from the surface, the uniaxial nematic order parameter shows an oscillatory behavior close to the
substrate, accompanied by a nonzero local biaxiality.
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I. INTRODUCTION focus on the derivation of the additional boundary energy at
“infinity” in the Appendix.) Section Il indicates the nu-

The structure of uniaxial nematic liquid crystals is merical relaxation method employed and presents selected
strongly influenced by the presence of orienting surfatés results for order parameter profiles. Finally, Sec. IV contains
In addition to the usual elastic distortions in the nematicsome concluding remarks.
bulk, which are well described by the OseencBer-Frank
energy, strong deformations can occur close to the surface
substrate[2,3]. These effects are often accompanied by a Il. EXTENDED LANDAU THEORY FOR
nonzero local biaxiality of the orientational ordgt]. The SURFACE-INDUCED EFFECTS
nematic orientation close to a confining substrate could be
detected experimentally using second-harmonic generation The geometry of our system is the semi-infinite space (
techniqueg5]. In addition, by x-ray studies the surface has=0), confined by a substrate surfacezatO and infinity
also been proven to induce a layered structure, i.e., smect{@=«) which, in numerical practice, means a large distance
order appears close to the surface that decays when movidigom the surface. Due to the infinite extension of the system
away from the substrate into the nematic bik In spite of  in x andy direction and the absence of any lateral structure of
considerable effort, both in theorl7—10] and computer the surface, we can reduce the problem to a one-dimensional
simulation[11-14, the full complexity of surface-induced geometry, i.e., all quantities depend only on the distance
structural changes in nematics is far from being understoodrom the surface. In order to be able to investigate both po-
Whereas Monte Carlo or molecular dynamics simulationssitional and orientational order, we need two different order
approach the problem on the molecular level, in our contriparameters. The smectic order parameter usually is a com-
bution we take a phenomenological viewpoint. With this aimplex number,p=€'X, whose phase¢ accounts for local
we consider an extended Landau theory, comparable ttayer deformations. We assume perfect layering at the sur-
Skaej et al.[8]. In addition to that paper, we investigate not face[ p(z=0)=1], and therefore, we are left only with the
only the uniaxial order, but also the full alignment tensor foramplitude(z) of the layering that is a real quantity indicat-
nematic order, and mainly, the amplitude of the smectic laying the degree of smectic order. The nematic order parameter
ering is taken into account. In particular, the influence of theis a second-rank traceless and symmetric tensor. Without
coupling between smectic and nematic order on the ordebss of generality we choose its parametrization as
parameter profiles, obtained from numerical relaxation, is in-
vestigated in detail. Whereas the boundary conditions at the

surface substrate are fixed, an additional boundary energy is Q.42) Qu(2) Q,(2)

derived, in order to guarantee a smooth behavior of the pro-

files at “infinity” (far from the surfacewhere the volume Q2)=| Qu(2) Qyy(2) Qy2) - @
equilibrium values of the order parameters should be QuA2) QyAz) —QA2)—Qy\(2)
reached.

The organization of the paper is as follows. In Sec. Il the
Landau theory used in our calculations is introduc@le  Therefore, there are six scalar functions whose profites
dependengehave to be determined. These profiles are found
from a numerical minimization of an energy, supplied with
*Email address: js69190@gmx.de appropriate boundary conditions &0 andz=x,
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A. Bulk energy functional by transversal fluctuations of the director fieldperpendicu-

The bulk energy functional is chosen according to an exi@’ {0 the layer normal. In our simplified geometry these
tended Landau theory. It consists of a smectic and a nematfi!ctuations are always in the-y plane. The coupling
contribution. The smectic energy contains a volume and afv€ngth is given by the intrinsic wave numbey of the

elastic contributiorf15] smectic layering. After inserting the nematic tensor order
’ parametefl) and reducing the smectic order parameter to its
Famee 371 p1%+ |p|*+ 3 k|(V—iqesn, )p|? 2 amplitude, the smectic energy becomes a functional depen-

dent ony(z), ' (prime denoting derivative with respect to
Due to the continuity of the smectic-nematic phase transiz), andQ;;(2),

tion, the volume smectic energy is an expansion into even

powers of the smectic order paramegerThis phase transi-

tion occurs atr=0, wherer is a reduced temperature. The Feme= 3 T2+ '+ 3 k[ 2+ A5 Quxt Qyy+ 380 7],

last expression in Eq2) is the elastic energy due to the €
gradients of the layer amplitud@vith smectic elastic con-

stant ). It incorporates acoupling to the nematic order Here, S,y is the scalar order parameter that minimizes the
based on local 1) gauge invariance, due to the nature of volumenematicenergy(see next subsectipn

the smectic order parameter as a complex nunjiéd. The nematic energy functional also consists of a volume
Namely, local changes of the smectic order are accompaniezhd an elastic part,

|
Fnen= Tlthij Qji— \/gQij QjkQui+(Qi;Qji )2+ 41‘1(3in|<)(!9in|<) + %k21((?iQik)((9ijk) + %ksl(é’inj)(ﬁjQik) (4)
= 31(Q2+ Q2+ Q7+ Q7+ Q7+ QyuQyy) — 3VB(QuQ2 + Qyy Q% — QxQ7, — Qy, Q% — QuuQ2,— QyQZ,
+2QyyQuQyr) + 4(Qh+ Q2+ Q2+ Q2+ Q2+ QQyy)?+ 3 (QUE+ Qi+ QU2+ Q)2+ Q)2+ Q1 Q))

+ 4 (Kot ka) (QU2+ QU2+ Qi2+Q)2+2Q/,Q),)- (5)

Unlike the smectic energy, the volume part of Ed) con- At infinity, the boundary conditions are not of Dirichlet-
tains a third-order expression, to describe the discontinuouype. Instead, we have to guarantee smooth profieso
isotropic-nematic phase transition, which in our parametrizaslope for the order parameters that should reach those values
tion occurs at=3 (t is here a reduced temperaturEor the  that minimize thevolumeparts of the smectic and nematic
elastic part of Eq(4) there are three independent deforma-energy(3) and(5). With this aim we insert the uniaxial form
tion modes similar to the Oseen-&wer-Frank theory for of the alignment tensaf7) into Eg. (5). A direct minimiza-
elastic distortions of the directok,; andks; denote the ra- tion yields the temperature dependence of the volume order
tios of elastic constants for the respective deformatiorparameters,

modes.
¢vo|( T)= % N T, 9
B. Boundary conditions \/_
++/54—-4
At the substrate surface the values for the order param- Syo(t)= M (10)
eters are fixed. We assume ideal smectic and uniaxial nem- 16

atic order. That means the smectic amplitude is one, and the ) o .
alignment tensor is completely determined by the uniaxial _The tilt angle to be reached at mﬂmt@;m |s.unkn.ovv_na
scalar order paramet&=1 and the fixed director surface tilt Priori- (Previous molecular dynamics simulations indicate a

angle© s (measured in th&-z plane, from thez axis). This tilt angle of©..=0 at infinity [12].) W‘::” therefore, také)., )
results in the Dirichlet boundary conditions, as a free parameter in our calculations. Its actual value is

determined by performing a series of simulations for any

P(z=0)=1, (6) fixed set of the remaining simulation parameters. Monitoring
6., versus the energlq,; of the equilibrated configurations
Q(z=0)=S(n®&n—11) 7) for this series yields the tilt angle at infinity, which corre-

sponds to the minimum of the functiéh..(Eq,). Following
this procedure, we are able to determibe in dependence

. . .
SIN’ O sy~ 3 0 SiNO5urCOSO sy of the reduced temperatuteand the smectic wave number
= 0 -3 0 . 8 Yo . .
Next we have to establish a boundary energy functional
SiNOg,;1C0Pg O CoF O gy 3 F.. whose minimization leads to the desired surface profiles
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at infinity. Based upon the procedure introduced by Galatola, TABLE I. Tilt angle at infinity (O..) (degreepin dependence of
Zelazna, and Lelidig16], the central idea for finding the the reduced temperatute(rows and the intrinsic smectic wave
boundary energy functional is bnearization of the bulk numberg, (columns. Botht andq, are in reduced units.

equations around the volume order parameteedculated

above. We provide all details of this derivation, which is an t ® 03 04 05 06 07 08
|mportan;[ |ngretd|et2t of oulr method, in the Appendix. Here g 51° 43° 38° 33° 270 15°
we merely quote the result, 0.1 20° 20° 17° 15° 13° g
Fo=LU(Q2.+ Q%)+ 1 (U+V I 0.2 17° 16° 14° 14° 10° 6°
2U(QGt Qf))+ 3(U+V) S Quict Qyy) o ee 1ee 1 13 g o

— Sy SIM? 0. (UQy+ VQyy) +VQ,uQyy + 3 ﬁQiy 0.4 13° 12° 11° 10° 8° 3°

0.5 13° 11° 10° 10° 6° 1°

+3V3(2+ Kyt kgD t(Q2,— 25,4 SINO.. c0sO..Q,, 0.6 13°  11° 9° 9° 7° 1°

0.7 11° 11° 10° 8° 6° 2°

+ Q)zlz) + % \/E-wzi (11) 08 120 100 80 70 40 10

0.9 10° 10° 7° 6° 2° 1°

whereU andV are terms that depend on the reduced tem- 10 11° 9 7o 5 30 10

peraturesr andt, the nematic elastic constarkts;, k3;, and
the volume order paramet&(t). (For the explicit expres-

sions see the Appendijx.

Now all order parameter profiles can be obtained from é)ia}xial order, respectively(We checked that the director
minimization of the total energy twist angle stays constant, due to the surface anchoring in the

x-z plane)
% The equilibrium profiles were evaluated for different val-
F=L [F+ F.o(=)]dz, (12)  ues of the reduced temperature0,...,1 and the intrinsic

smectic wave numbeg,=0.3,...,0.8. All other parameters

with the Dirichlet boundary condition¢s) and (8) valid at ~ Were fixed, except for the filt angle at infiniy.,, which
7=0. was found for each set,qg) from the additional minimiza-
tion procedure indicated in Sec. 11 B. Therel$y,, could be
determined up to a maximum error af1°. Regarding the
remaining parameters, the elastic constants were chosen as

The minimization of the total energyl2) was performed Kky;=ksz;=1 and k=5 that accounts for the fact that layer
numerically, employing a standard Newton-Gauf-Seidetlistortions should contain a higher elastic energy than defor-
technigue which, in our case, formally corresponds to a onemations of orientational order. The reduced temperature was
dimensional version of the finite element method. First ther=0.1, which corresponds to a nematic state point, slightly
“infinite” distance from the surface was replaced by a large,above the smectic-nematic phase transition. Finally, the di-
finite valuez,,,,=100. The range € z<z,,,,was discretized rector at the surface was anchored at a tilt angledgf
in N=1000 intervals. The bulk and boundary energy func-=60°.
tionals (3), (5), and(11) were evaluated on these intervals, Let us first discuss the behavior of the tilt angle at infinity
the derivatives with respect wbeing replaced by finite dif- (0.) in dependence on the reduced temperatuaed the
ferences. The values of the order parameters=ad were smectic wave numbeq,. The respective results are dis-
fixed according to Eq96) and(8). For the initial configura- played in Table I. Fixing the surface tilt angle &g,
tion we assumed linear profiles for all quantitigsand Q;; =60°, in almost all cases we find a strong reorientation to-
on the interval Gsz=<z,,,, by interpolating between their wards the surface normal that increases with the smectic
surface and volume values. An iterative procedure was thewave number. The influence of the smectic wave number on
performed on each grid point. All order parameters werethe director reorientation can be understood from the particu-
corrected according to the Newton-GauR-Seidel prescriptiorar form of the coupling energg?). In order to minimize this

coupling, the transversal director components should be

IIl. ORDER PARAMETER PROFILES

new_ yold_ IF19X (X=,Q1) (13) small in those regions where the smectic order parameter is
J2E/oX2 R significantly nonzero, i.e., close to the surface. Therefore, it

is obvious that for increasing wave number the reorientation

where the functional derivatives in E(L3) were evaluated of the tilt angle toward the direction of the surface normal
by numerical differentiation. The relaxation was terminatedoecomes more pronounced. Unlike for the smectic wave
when the relative change of the total energy was less thanumber, the dependence ©f. on the reduced temperature
10 ° that corresponded to some thousand relaxation stepsis fairly small. Only for low values of both andqj the tilt

For further discussion the nematic tensor order parameteangle deformation is reduced. Apparentlytat0.0 the ori-
will be analyzed in terms of its eigenvalues and eigenvectorsentational fluctuations are still too small to enhance the di-
More specifically, we will plot the tilt angle of the main rector reorientation for small wave numbers.
director, measured from theaxis and two scalar order pa- Figures 1-3 correspond to a reduced temperaturé of
rameters. The latter ones measure the degree of uniaxial an€0.0, which means a nematic state point far away from the
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FIG. 1. Profile of the smectic order parametdrz) for reduced FIG. 3. Profile of the director tilt angl®(z) for reduced tem-

temperatureg =0.0, at various intrinsic smectic wave numbegs peraturet=0.0, at various intrinsic smectic wave numbaegg.
Solid line, ¢(z) at qpy=0.3; dashed liney(z) at q,=0.6; dotted  Solid line, ©(z) at qy=0.3; dashed lineP(z) at q,=0.6; dotted
line, ¥(z) atqy=0.8. line, ©(z) atqy=0.8.

nematic-isotropic phase transition. The smectic order paranrector tilt angle strongly depends on the intrinsic smectic
eter profile is given in Fig. 1 for wave numbeyg=0.3, 0.6, wave numbexFig. 3). Whereas foig,= 0.8 there is again a
and 0.8, corresponding to a layer spacing of 20.9, 12.6, angtrong change within a comparably short distance, for low
7.8. Obviously, the smectic structure is rapidly decayingwave numbers <0.6) the director reorientation is much
from its maximum value of 1 when moving away from the weaker. The behavior of the tilt angle is also changing quali-
surface. At a distance of 20 the curves essentially haveatively with the wave number. For example, fiy=0.8 the
reached their asymptotic value of zero. This loss of smecticilt angle profile becomes nonmonotonous, taking intermedi-
order is almost independent of the wave number. ate values that are closer to the homeotropic orientation than
As shown in Fig. 2 the uniaxial nematic order parameterthe tilt angle©., finally reached. As revealed from Fig. 4, an
is also approaching its asymptotic value within a distance oéven more drastic change occurs for the reduced temperature
20. The value reached is 0.92, which precisely corresponds=1.0, which is just below the nematic-isotropic phase tran-
to the volume value of the scalar order parameter at temperaition. For low wave numbers the tilt angle profiles show a
turet=0.0, according to Eq10). Remarkably, the uniaxial local maximum at a distance of around 20, before decaying
order parameter is not decaying monotonically, instead therswards the volume value.
is an oscillatory behavior. For large wave numbers (
=0.6) it even decreases below its volume value. The non- IV. REMARKS
monotonic behavior of uniaxial order is accompanied by the
occurrence of a nonzero biaxial order parameter. Both sup- (1) Summarizing our work, we have numerically analyzed
pression of uniaxial order and increased biaxiality close tdhe surface-induced profiles of smectic and nematic order as
the surface have also been observed in computer simulationgell as director orientation. Whereas the order parameters
based on the molecular Gay-Berne mojdd]. are always strongly changing in a thin layer close to the

Unlike the scalar order parameters, the profile of the disurface, the tilt angle reorientation is mainly dependent on
the intrinsic smectic wave number of the liquid crystal
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FIG. 2. Profile of the nematic order paramet&g) and T(z)
for uniaxial and biaxial order, respectively, for reduced temperature FIG. 4. Profile of the director tilt angl®(z) for reduced tem-
t=0.0, at various intrinsic smectic wave numbegs Solid line, peraturet=1.0, at various intrinsic smectic wave numbaegg.
S(z) at qy=0.3; dashed lineS(z) at go=0.6; upper dotted line, Solid line, ©(z) at qy=0.3; dashed lineQ(z) at qo=0.6; dotted
S(z) atgy=0.8; lower dotted lineT(z) atg,=0.8. line, ©(z) atgqy=0.8.
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which, in our model, acts as a coupling parameter betweedevelopments of display technique, will break the symmetry
nematic and smectic order. It seems, however, that the casd our example. However, the treatment of open boundaries
of high wave numberd=0.8) is the most realistic, consid- by an additional energy functional derived from a lineariza-
ering the experimental observation of a strong reorientatiotion of the bulk energy is a very general concept that could
close to the surfackb]. In addition, surface-induced biaxial- be used for any numerical study dealing with “infinitely”
ity and suppression of uniaxial order, previously detected irextended systems.
experiment and molecular simulations, could also be con-
firmed within the frame of our model.

(2) The asymptotic behavior of the profiles at infinity was APPENDIX: DERIVATION OF THE BOUNDARY
reproduced in numerics by deriving a boundary energy func- ENERGY FUNCTIONAL
t_|onaI: With this aim, referring to the metho‘?‘ of ReL6] we . Before starting to derive the boundary energy functional
linearized th? bulk Euler-Lagrange equations aroqnd thei t infinity, we first remember the desired values for the order
volume solutions. When the boundary energy is included,, o neters. At infinity the smectic order is completely lost
into the r_lumerlgal_mln|m|zat|on procedure,_ the order paramr ., _)=0]. The nematic order parameter is again
eter profllgs at infinity sm_oothly r_each their volum_e Values'uniaxial, but with the volume scalar order paramedgy(t),
Although in our case FhIS technique was gsed in a Oneaependent on temperature, and tilt angle,
dimensional geometry, it could be extended in a straightfor-
ward way to more complex situations. For instance, a later-

ally structured surface, which is fairly common in novel Y(z=0)=0, (A1)
|
S,(t)(SIPO,.—1) 0 S,(t)SinO,, sinO .,
Q(z==)=S(n@n—31)= 0 —3Sw(t) 0 : (A2)

Sii(t)sinO,, sinO, 0 Swi(t)(cog 0., —3)

We start with the bulk equations, which are obtained fromThe linearized Euler-Lagrange equations now become ex-
the bulk energy functionaF= Fgyect Frem: (3) and(5), by  plicitly
variational calculus as the corresponding Euler-Lagrange

equations are (3+ Koy + kap)t
;X: 3+ 2(|( Tk 1) [Qxx_ Svol(sm2 6..— %)]
L 0F doFE A3 A
X=X dzax (X=¢,Qj)). (A3) (Kog+ Kap)t .
- W(ny+ 3Sv0)s (A7)
In order to obtain a smooth behavior of the profiles at infin-
ity, the Euler-Lagrange equatiofa3) are linearized around (Kpy+ Kapt
the volume order parameters. With that aim we calculate the Q! =— ——— 3L [Q —S,(sifO0.—1)]
. oo ; . NP T vy 3+ 2(kytkap) - o *® 3
partial derivatives of the right-hand sides at infinity which, in 2173
turn, are obtained from the quadratic part of the free energy (3+ Ky + kapt
(3) and(5), m(Qyﬁ‘ 3Suol). (A8)
AL xx _dlyy gy
IQunl,_. Q. Q| . Qxy=1Qyy, (A9)
:& :ﬁ —t (A4) 2t . .
IQud,_. Q. = KT ke Kort k31(sz— SyoiSiNO.,,sinO.,), (A10)
7] - dlyy 1 2t
=T~ :_tr (AS) P —
IQyyl e Q. 2 V2" 3 Kyt Ky Y (A11)
‘?Lc// T
W Z:m— T. (AG) lﬂ,,: ; lﬂ (A].Z)
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Among Egs.(A7)—(A12), the first two are coupled. In

PHYSICAL REVIEW E63 021510

Qufz=0)=—2t/(2+ky;+ Kz

order to find their solutions we note that they can be written

in matrix form,

(QQX _(A B) Qux— Swol(SIP 0., — %)
Qy/ \B A :

. (A13)
ny+ §S\lol

Now we change the variables to the deviationgQyf, and

Qyy from the volume solutions,

X (Qyz;—S,01SINO,, siNO,,), (A21)
Qy(z=2)=—\2t/(2+kyTks)Qy,,  (A22)
¥ (z=%)=— 7l xy. (A23)

The Cauchy boundary condition at infinity has to be de-
rived from variational calculus in order to be included into

Q% _ A B 5Qxx) (A14) the relaxation. It is obtained from the bulk energy functional
oQyy B A/\0Qyy/)’ F and a boundary energy functional,
By determining the eigenvalues and eigenvectors of the co- OF. OF

efficient matrix, it can be expressed by its diagonalized form

and the corresponding orthogonal transformations,

Qy) wval-1 1/ 0o A+B/»z\1 1
0Qxx
x( 5ny) : (A15)

Now the system can be decoupled by a similarity transfor-
mation. Keeping only the decaying modes, we arrive at the

solution
(5QXX 1({1 1\/e A8z 0 1/1 -1
Qyy) wval-1 1 0 e ATBz| 511 1

(Al6)

3

The asymptotic Cauchy boundary conditions are obtained by

differentiating the solutions by, taken at infinity,

(5Q;X)_ 1(1 1)( A—B 0 1(1 —1)
Q) w»l-1 1)\ o JAarB/wvall1 1
SQxx
x( 5ny). (A17)

The explicit boundary conditions fd@,, andQ,, then are
Quu(z=2)=—3(VA+B+ JA=B)[Qu—Sol(SiM? O.,
~9]1-3(VA+B- VA=B)(Qyy+ 5Swa),

(A18)
Qyy(z=2)==3(VA+B— VA—B)[Qu~ Sa(si? O..

- %)]_ %( VA+B+ \/A_B)(ny+ %S\/ol)-
(A19)

The remaining linearized Euler-Lagrange equations are al-

=0 (X=4,Qj). (A24)

X X
To obtain this boundary energy functional we insert the
Cauchy boundary conditionA18)—(A23), previously de-
rived from the linearized Euler-Lagrange equations, into the
variational equatiorfA24). This immediately yields the six
partial derivatives of the boundary energy functional,

0F,
IQux - 1(2+kptksg 14+Kkp+Kkg ( Q>,<><>
IF T 20 1tkytky 24Kyt ke | QY
&ny
(A25)
_1{2+kortkay 1tkartka a26
4 l+ k21+ k31 2+ k21+ k31
JA+B+JA-B JA+B-|A-B
X
JA+B-JA-B JA+B+\A-B

y ( Qux— Suol(SIF 6.~ 3
ny+ %Svol

_(U V) Qxx_S\/OI(Sinzeoc_%))
vV u ny+ %Svol ,
(A27)
IF. .
any = Qxy_ \/foy ’ (A28)

af“ 1 ’ 1
== 3(2+ K1+ ka1 Qy,= V2 (2+ Ky +Kap)t

9Qxz
X(Qxz— S\/ol sinB.,sinB..),

(A29)

ready decoupled that immediately yields the corresponding

Cauchy boundary conditions at infinity,

Qly(z=2)=—1Qyy, (A20)

0F- 1 ’ 1
-~ =~ 2(2+kart k3 Qy,= V2 (2+ kot Ka)tQyz,

(?Qyz
(A30)
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P a3y TP 2U(QGHQY) + 5(UFV)Sia(Quct Qyy)

— \/E_w (A32) — Sl S eoc(UQxx+Vny) + VQxeyy+ % \/EQiy

Now the boundary energy functional is obtained by integra- + 33 (24 Koy + ks t(Q2,— 25,/ SINO .. 08O . Q,,
tion, just in the same way a potential field is calculated from X

a given force field in classical mechanics. The final result, - )
quoted in the main textl1), reads +Qy)+ N (A33)
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