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Numerical study of surface-induced reorientation and smectic layering in a nematic liquid crystal
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Surface-induced profiles of both nematic and smectic order parameters in a nematic liquid crystal, ranging
from an orienting substrate to ‘‘infinity,’’ were evaluated numerically on the basis of an extended Landau
theory. In order to obtain a smooth behavior of the solutions at ‘‘infinity,’’ a boundary energy functional was
derived by linearizing the Landau energy around its equilibrium solutions. We find that the intrinsic wave
number of the smectic structure, which plays the role of a coupling between nematic and smectic order,
strongly influences the director reorientation. Whereas the smectic order is rapidly decaying when moving
away from the surface, the uniaxial nematic order parameter shows an oscillatory behavior close to the
substrate, accompanied by a nonzero local biaxiality.
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I. INTRODUCTION

The structure of uniaxial nematic liquid crystals
strongly influenced by the presence of orienting surfaces@1#.
In addition to the usual elastic distortions in the nema
bulk, which are well described by the Oseen-Zo¨cher-Frank
energy, strong deformations can occur close to the sur
substrate@2,3#. These effects are often accompanied by
nonzero local biaxiality of the orientational order@4#. The
nematic orientation close to a confining substrate could
detected experimentally using second-harmonic genera
techniques@5#. In addition, by x-ray studies the surface h
also been proven to induce a layered structure, i.e., sme
order appears close to the surface that decays when mo
away from the substrate into the nematic bulk@6#. In spite of
considerable effort, both in theory@7–10# and computer
simulation @11–14#, the full complexity of surface-induced
structural changes in nematics is far from being understo
Whereas Monte Carlo or molecular dynamics simulatio
approach the problem on the molecular level, in our con
bution we take a phenomenological viewpoint. With this a
we consider an extended Landau theory, comparable
Skačej et al. @8#. In addition to that paper, we investigate n
only the uniaxial order, but also the full alignment tensor
nematic order, and mainly, the amplitude of the smectic l
ering is taken into account. In particular, the influence of
coupling between smectic and nematic order on the o
parameter profiles, obtained from numerical relaxation, is
vestigated in detail. Whereas the boundary conditions at
surface substrate are fixed, an additional boundary energ
derived, in order to guarantee a smooth behavior of the p
files at ‘‘infinity’’ ~far from the surface! where the volume
equilibrium values of the order parameters should
reached.

The organization of the paper is as follows. In Sec. II t
Landau theory used in our calculations is introduced.~We
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focus on the derivation of the additional boundary energy
‘‘infinity’’ in the Appendix.! Section III indicates the nu-
merical relaxation method employed and presents sele
results for order parameter profiles. Finally, Sec. IV conta
some concluding remarks.

II. EXTENDED LANDAU THEORY FOR
SURFACE-INDUCED EFFECTS

The geometry of our system is the semi-infinite spacez
>0), confined by a substrate surface atz50 and infinity
(z5`) which, in numerical practice, means a large distan
from the surface. Due to the infinite extension of the syst
in x andy direction and the absence of any lateral structure
the surface, we can reduce the problem to a one-dimensi
geometry, i.e., all quantities depend only on the distancz
from the surface. In order to be able to investigate both
sitional and orientational order, we need two different ord
parameters. The smectic order parameter usually is a c
plex number,r5ceix, whose phasex accounts for local
layer deformations. We assume perfect layering at the
face @r(z50)51#, and therefore, we are left only with th
amplitudec(z) of the layering that is a real quantity indica
ing the degree of smectic order. The nematic order param
is a second-rank traceless and symmetric tensor. With
loss of generality we choose its parametrization as

Q~z!5S Qzz~z! Qxy~z! Qxz~z!

Qxy~z! Qyy~z! Qyz~z!

Qxz~z! Qyz~z! 2Qzz~z!2Qyy~z!
D . ~1!

Therefore, there are six scalar functions whose profiles~z
dependence! have to be determined. These profiles are fou
from a numerical minimization of an energy, supplied wi
appropriate boundary conditions atz50 andz5`.
©2001 The American Physical Society10-1
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A. Bulk energy functional

The bulk energy functional is chosen according to an
tended Landau theory. It consists of a smectic and a nem
contribution. The smectic energy contains a volume and
elastic contribution@15#,

Fsmec5
1
2 turu21uru41 1

2 ku~¹2 iq0dn'!ru2. ~2!

Due to the continuity of the smectic-nematic phase tran
tion, the volume smectic energy is an expansion into e
powers of the smectic order parameterr. This phase transi-
tion occurs att50, wheret is a reduced temperature. Th
last expression in Eq.~2! is the elastic energy due to th
gradients of the layer amplitude~with smectic elastic con-
stant k!. It incorporates acoupling to the nematic order,
based on local U~1! gauge invariance, due to the nature
the smectic order parameter as a complex number@15#.
Namely, local changes of the smectic order are accompa
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by transversal fluctuations of the director fieldn, perpendicu-
lar to the layer normal. In our simplified geometry the
fluctuations are always in thex-y plane. The coupling
strength is given by the intrinsic wave numberq0 of the
smectic layering. After inserting the nematic tensor ord
parameter~1! and reducing the smectic order parameter to
amplitude, the smectic energy becomes a functional dep
dent onc(z), c8 ~prime denoting derivative with respect t
z!, andQi j (z),

Fsmec5
1
2 tc21c41 1

2 k@c821q0
2~Qxx1Qyy1

2
3 Svol!c

2#.
~3!

Here, Svol is the scalar order parameter that minimizes
volumenematicenergy~see next subsection!.

The nematic energy functional also consists of a volu
and an elastic part,
Fnem5 1
4 tQi j Qji 2A6Qi j QjkQki1~Qi j Qji !

21 1
4 ~] iQjk!~] iQjk!1 1

4 k21~] iQik!~] jQjk!1 1
4 k31~]kQi j !~] jQik! ~4!

5 1
2 t~Qxx

2 1Qxy
2 1Qxz

2 1Qyy
2 1Qyz

2 1QxxQyy!23A6~QxxQxy
2 1QyyQxy

2 2QxxQyy
2 2QyyQxx

2 2QxxQyz
2 2QyyQzz

2

12QxyQxzQyz!14~Qxx
2 1Qxy

2 1Qxy
2 1Qyy

2 1Qyz
2 1QxxQyy!

21 1
2 ~Qxx8

21Qxy8
21Qxz8

21Qyy821Qyz8
21Qxx8 Qyy8 !

1 1
4 ~k211k31!~Qxx8

21Qyy821Qxz8
21Qyz8

212Qxx8 Qyy8 !. ~5!
t-
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Unlike the smectic energy, the volume part of Eq.~4! con-
tains a third-order expression, to describe the discontinu
isotropic-nematic phase transition, which in our parametri
tion occurs att5 9

8 ~t is here a reduced temperature!. For the
elastic part of Eq.~4! there are three independent deform
tion modes similar to the Oseen-Zo¨cher-Frank theory for
elastic distortions of the director,k21 andk31 denote the ra-
tios of elastic constants for the respective deformat
modes.

B. Boundary conditions

At the substrate surface the values for the order par
eters are fixed. We assume ideal smectic and uniaxial n
atic order. That means the smectic amplitude is one, and
alignment tensor is completely determined by the uniax
scalar order parameterS51 and the fixed director surface ti
angleUsurf ~measured in thex-zplane, from thez axis!. This
results in the Dirichlet boundary conditions,

c~z50!51, ~6!

Q~z50!5S~n^ n2 1
3 1! ~7!

5S sin2 Usurf2
1
3 0 sinUsurfcosUsurf

0 2 1
3 0

sinUsurfcosUsurf 0 cos2 Usurf2
1
3

D . ~8!
us
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At infinity, the boundary conditions are not of Dirichle
type. Instead, we have to guarantee smooth profiles~zero
slope! for the order parameters that should reach those va
that minimize thevolumeparts of the smectic and nemat
energy~3! and~5!. With this aim we insert the uniaxial form
of the alignment tensor~7! into Eq. ~5!. A direct minimiza-
tion yields the temperature dependence of the volume o
parameters,

cvol~t!5 1
2 A2t, ~9!

Svol~ t !5
3A61A54248t

16
. ~10!

The tilt angle to be reached at infinity,U` , is unknowna
priori . ~Previous molecular dynamics simulations indicate
tilt angle of U`50 at infinity @12#.! We, therefore, takeU`

as a free parameter in our calculations. Its actual value
determined by performing a series of simulations for a
fixed set of the remaining simulation parameters. Monitor
U` versus the energyEequi of the equilibrated configuration
for this series yields the tilt angle at infinity, which corre
sponds to the minimum of the functionU`(Eequi). Following
this procedure, we are able to determineU` in dependence
of the reduced temperaturet and the smectic wave numbe
q0 .

Next we have to establish a boundary energy functio
F` whose minimization leads to the desired surface profi
0-2
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NUMERICAL STUDY OF SURFACE-INDUCED . . . PHYSICAL REVIEW E63 021510
at infinity. Based upon the procedure introduced by Galat
Żelazna, and Lelidis@16#, the central idea for finding the
boundary energy functional is alinearization of the bulk
equations around the volume order parameterscalculated
above. We provide all details of this derivation, which is
important ingredient of our method, in the Appendix. He
we merely quote the result,

F`5 1
2 U~Qxx

2 1Qyy
2 !1 1

3 ~U1V!Svol~Qxx1Qyy!

2Svol sin2 U`~UQxx1VQyy!1VQxxQyy1
1
2 AtQxy

2

1 1
2A 1

2 ~21k211k31!t~Qxz
2 22Svol sinU` cosU`Qxz

1Qyz
2 !1 1

2 Aktc2, ~11!

whereU and V are terms that depend on the reduced te
peraturest andt, the nematic elastic constantsk21, k31, and
the volume order parameterSvol(t). ~For the explicit expres-
sions see the Appendix.!

Now all order parameter profiles can be obtained from
minimization of the total energy

F5E
0

`

@F1F`d~`!#dz, ~12!

with the Dirichlet boundary conditions~6! and ~8! valid at
z50.

III. ORDER PARAMETER PROFILES

The minimization of the total energy~12! was performed
numerically, employing a standard Newton-Gauß-Sei
technique which, in our case, formally corresponds to a o
dimensional version of the finite element method. First
‘‘infinite’’ distance from the surface was replaced by a larg
finite valuezmax5100. The range 0<z<zmax was discretized
in N51000 intervals. The bulk and boundary energy fun
tionals ~3!, ~5!, and ~11! were evaluated on these interva
the derivatives with respect toz being replaced by finite dif-
ferences. The values of the order parameters atz50 were
fixed according to Eqs.~6! and~8!. For the initial configura-
tion we assumed linear profiles for all quantitiesc and Qi j
on the interval 0<z<zmax, by interpolating between thei
surface and volume values. An iterative procedure was t
performed on each grid point. All order parameters w
corrected according to the Newton-Gauß-Seidel prescript

Xnew5Xold2
]F/]X

]2F/]X2 ~X5c,Qi j !, ~13!

where the functional derivatives in Eq.~13! were evaluated
by numerical differentiation. The relaxation was terminat
when the relative change of the total energy was less t
1026 that corresponded to some thousand relaxation ste

For further discussion the nematic tensor order param
will be analyzed in terms of its eigenvalues and eigenvect
More specifically, we will plot the tilt angle of the mai
director, measured from thez axis and two scalar order pa
rameters. The latter ones measure the degree of uniaxia
02151
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biaxial order, respectively.~We checked that the directo
twist angle stays constant, due to the surface anchoring in
x-z plane.!

The equilibrium profiles were evaluated for different va
ues of the reduced temperaturet50,...,1 and the intrinsic
smectic wave numberq050.3,...,0.8. All other parameter
were fixed, except for the tilt angle at infinityU` , which
was found for each set (t,q0) from the additional minimiza-
tion procedure indicated in Sec. II B. Thereby,U` could be
determined up to a maximum error of61°. Regarding the
remaining parameters, the elastic constants were chose
k215k3151 and k55 that accounts for the fact that laye
distortions should contain a higher elastic energy than de
mations of orientational order. The reduced temperature
t50.1, which corresponds to a nematic state point, sligh
above the smectic-nematic phase transition. Finally, the
rector at the surface was anchored at a tilt angle ofUsurf
560°.

Let us first discuss the behavior of the tilt angle at infin
(U`) in dependence on the reduced temperaturet and the
smectic wave numberq0 . The respective results are dis
played in Table I. Fixing the surface tilt angle atUsurf
560°, in almost all cases we find a strong reorientation
wards the surface normal that increases with the sme
wave number. The influence of the smectic wave number
the director reorientation can be understood from the part
lar form of the coupling energy~2!. In order to minimize this
coupling, the transversal director components should
small in those regions where the smectic order paramete
significantly nonzero, i.e., close to the surface. Therefore
is obvious that for increasing wave number the reorientat
of the tilt angle toward the direction of the surface norm
becomes more pronounced. Unlike for the smectic wa
number, the dependence ofU` on the reduced temperaturet
is fairly small. Only for low values of botht andq0 the tilt
angle deformation is reduced. Apparently, att50.0 the ori-
entational fluctuations are still too small to enhance the
rector reorientation for small wave numbers.

Figures 1–3 correspond to a reduced temperaturet
50.0, which means a nematic state point far away from

TABLE I. Tilt angle at infinity (U`) ~degrees! in dependence of
the reduced temperaturet ~rows! and the intrinsic smectic wave
numberq0 ~columns!. Both t andq0 are in reduced units.

t q0 0.3 0.4 0.5 0.6 0.7 0.8

0.0 51° 43° 38° 33° 27° 15°
0.1 20° 20° 17° 15° 13° 8°
0.2 17° 16° 14° 14° 10° 6°
0.3 15° 15° 12° 12° 8° 3°
0.4 13° 12° 11° 10° 8° 3°
0.5 13° 11° 10° 10° 6° 1°
0.6 13° 11° 9° 9° 7° 1°
0.7 11° 11° 10° 8° 6° 2°
0.8 12° 10° 8° 7° 4° 1°
0.9 10° 10° 7° 6° 2° 1°
1.0 11° 9° 7° 5° 3° 1°
0-3



am

an
in
e

av
ct

te
o

n
er
l
e
(
on
th
u
t

tio

d

tic

ow
h
ali-

di-
han
n
ture
n-
a

ing

ed
r as
ters
the
on
al

tur

JOACHIM STELZER AND RALF BERNHARD PHYSICAL REVIEW E63 021510
nematic-isotropic phase transition. The smectic order par
eter profile is given in Fig. 1 for wave numbersq050.3, 0.6,
and 0.8, corresponding to a layer spacing of 20.9, 12.6,
7.8. Obviously, the smectic structure is rapidly decay
from its maximum value of 1 when moving away from th
surface. At a distance of 20 the curves essentially h
reached their asymptotic value of zero. This loss of sme
order is almost independent of the wave number.

As shown in Fig. 2 the uniaxial nematic order parame
is also approaching its asymptotic value within a distance
20. The value reached is 0.92, which precisely correspo
to the volume value of the scalar order parameter at temp
ture t50.0, according to Eq.~10!. Remarkably, the uniaxia
order parameter is not decaying monotonically, instead th
is an oscillatory behavior. For large wave numbersq
>0.6) it even decreases below its volume value. The n
monotonic behavior of uniaxial order is accompanied by
occurrence of a nonzero biaxial order parameter. Both s
pression of uniaxial order and increased biaxiality close
the surface have also been observed in computer simula
based on the molecular Gay-Berne model@12#.

Unlike the scalar order parameters, the profile of the

FIG. 1. Profile of the smectic order parameterc(z) for reduced
temperaturet50.0, at various intrinsic smectic wave numbersq0 .
Solid line, c(z) at q050.3; dashed line,c(z) at q050.6; dotted
line, c(z) at q050.8.

FIG. 2. Profile of the nematic order parametersS(z) and T(z)
for uniaxial and biaxial order, respectively, for reduced tempera
t50.0, at various intrinsic smectic wave numbersq0 . Solid line,
S(z) at q050.3; dashed line,S(z) at q050.6; upper dotted line,
S(z) at q050.8; lower dotted line,T(z) at q050.8.
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rector tilt angle strongly depends on the intrinsic smec
wave number~Fig. 3!. Whereas forq050.8 there is again a
strong change within a comparably short distance, for l
wave numbers (q<0.6) the director reorientation is muc
weaker. The behavior of the tilt angle is also changing qu
tatively with the wave number. For example, forq050.8 the
tilt angle profile becomes nonmonotonous, taking interme
ate values that are closer to the homeotropic orientation t
the tilt angleU` finally reached. As revealed from Fig. 4, a
even more drastic change occurs for the reduced tempera
t51.0, which is just below the nematic-isotropic phase tra
sition. For low wave numbers the tilt angle profiles show
local maximum at a distance of around 20, before decay
towards the volume value.

IV. REMARKS

~1! Summarizing our work, we have numerically analyz
the surface-induced profiles of smectic and nematic orde
well as director orientation. Whereas the order parame
are always strongly changing in a thin layer close to
surface, the tilt angle reorientation is mainly dependent
the intrinsic smectic wave number of the liquid cryst

FIG. 3. Profile of the director tilt angleU(z) for reduced tem-
perature t50.0, at various intrinsic smectic wave numbersq0 .
Solid line, U(z) at q050.3; dashed line,U(z) at q050.6; dotted
line, U(z) at q050.8.

FIG. 4. Profile of the director tilt angleU(z) for reduced tem-
perature t51.0, at various intrinsic smectic wave numbersq0 .
Solid line, U(z) at q050.3; dashed line,U(z) at q050.6; dotted
line, U(z) at q050.8.
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NUMERICAL STUDY OF SURFACE-INDUCED . . . PHYSICAL REVIEW E63 021510
which, in our model, acts as a coupling parameter betw
nematic and smectic order. It seems, however, that the
of high wave number (q50.8) is the most realistic, consid
ering the experimental observation of a strong reorienta
close to the surface@5#. In addition, surface-induced biaxia
ity and suppression of uniaxial order, previously detected
experiment and molecular simulations, could also be c
firmed within the frame of our model.

~2! The asymptotic behavior of the profiles at infinity w
reproduced in numerics by deriving a boundary energy fu
tional. With this aim, referring to the method of Ref.@16# we
linearized the bulk Euler-Lagrange equations around th
volume solutions. When the boundary energy is includ
into the numerical minimization procedure, the order para
eter profiles at infinity smoothly reach their volume value
Although in our case this technique was used in a o
dimensional geometry, it could be extended in a straight
ward way to more complex situations. For instance, a la
ally structured surface, which is fairly common in nov
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developments of display technique, will break the symme
of our example. However, the treatment of open bounda
by an additional energy functional derived from a lineariz
tion of the bulk energy is a very general concept that co
be used for any numerical study dealing with ‘‘infinitely
extended systems.

APPENDIX: DERIVATION OF THE BOUNDARY
ENERGY FUNCTIONAL

Before starting to derive the boundary energy functio
at infinity, we first remember the desired values for the or
parameters. At infinity the smectic order is completely lo
@c(z5`)50#. The nematic order parameter is aga
uniaxial, but with the volume scalar order parameterSvol(t),
dependent on temperature, and tilt angleU` ,

c~z5`!50, ~A1!
Q~z5`!5S~n^ n2 1
3 1!5S Svol~ t !~sin2 U`2 1

3 ! 0 Svol~ t !sinU` sinU`

0 2 1
3 Svol~ t ! 0

Svol~ t !sinU` sinU` 0 Svol~ t !~cos2 U`2 1
3 !

D . ~A2!
ex-
We start with the bulk equations, which are obtained fro
the bulk energy functionalF5Fsmec1Fnem, ~3! and ~5!, by
variational calculus as the corresponding Euler-Lagra
equations are

LX5
]F
]X

2
d

dz

]F
]X8

50 ~X5c,Qi j !. ~A3!

In order to obtain a smooth behavior of the profiles at infi
ity, the Euler-Lagrange equations~A3! are linearized around
the volume order parameters. With that aim we calculate
partial derivatives of the right-hand sides at infinity which,
turn, are obtained from the quadratic part of the free ene
~3! and ~5!,

]Lxx

]Qxx
U

z5`

5
]Lyy

]Qyy
U

z5`

5
]Lxy

]Qxy
U

z5`

5
]Lxz

]Qxz
U

z54

5
]Lyz

]Qyz
U

z5`

5t, ~A4!

]Lxx

]Qyy
U

z5`

5
]Lyy

]Qxx
U

z5`

5
1

2
t, ~A5!

]Lc

]c U
z5`

5t. ~A6!
e

-

e

y

The linearized Euler-Lagrange equations now become
plicitly

Qxx9 5
~31k211k31!t

312~k211k31!
@Qxx2Svol~sin2 U`2 1

3 !#

2
~k211k31!t

312~k211k31!
~Qyy1

1
3 Svol!, ~A7!

Qyy9 52
~k211k31!t

312~k211k31!
@Qxx2Svol~sin2 U`2 1

3 !#

1
~31k211k31!t

312~k211k31!
~Qyy1

1
3 Svol!, ~A8!

Qxy9 5tQxy , ~A9!

Qxz9 5
2t

21k211k31
~Qxz2Svol sinU` sinU`!, ~A10!

Qyz9 5
2t

21k211k31
Qyz , ~A11!

c95
t

k
c. ~A12!
0-5
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Among Eqs.~A7!–~A12!, the first two are coupled. In
order to find their solutions we note that they can be writ
in matrix form,

S Qxx9

Qyy9 D 5S A B

B AD S Qxx2Svol~sin2 U`2 1
3 !

Qyy1
1
3 Svol

D . ~A13!

Now we change the variables to the deviations ofQxx and
Qyy from the volume solutions,

S dQxx9

dQyy9 D 5S A B

B AD S dQxx

dQyy
D . ~A14!

By determining the eigenvalues and eigenvectors of the
efficient matrix, it can be expressed by its diagonalized fo
and the corresponding orthogonal transformations,

S dQxx9

dQyy9 D 5
1

&
S 1 1

21 1D S A2B 0

0 A1BD 1

&
S 1 21

1 1 D
3S dQxx

dQyy
D . ~A15!

Now the system can be decoupled by a similarity trans
mation. Keeping only the decaying modes, we arrive at
solution

S dQxx

dQyy
D5

1

&
S 1 1

21 1D S e2AA2Bz 0

0 e2AA1BzD 1

&
S 1 21

1 1 D
3S a

b D . ~A16!

The asymptotic Cauchy boundary conditions are obtained
differentiating the solutions byz, taken at infinity,

S dQxx8

dQyy8 D 52
1

&
S 1 1

21 1D S AA2B 0

0 AA1B
D 1

&
S 1 21

1 1 D
3S dQxx

dQyy
D . ~A17!

The explicit boundary conditions forQxx andQyy then are

Qxx8 ~z5`!52 1
2 ~AA1B1AA2B!@Qxx2Svol~sin2 U`

2 1
3 !#2 1

2 ~AA1B2AA2B!~Qyy1
1
3 Svol!,

~A18!

Qyy8 ~z5`!52 1
2 ~AA1B2AA2B!@Qxx2Svol~sin2 U`

2 1
3 !#2 1

2 ~AA1B1AA2B!~Qyy1
1
3 Svol!.

~A19!

The remaining linearized Euler-Lagrange equations are
ready decoupled that immediately yields the correspond
Cauchy boundary conditions at infinity,

Qxy8 ~z5`!52AtQxy , ~A20!
02151
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Qxz8 ~z5`!52A2t/~21k211k31!

3~Qxz2Svol sinU` sinU`!, ~A21!

Qyz8 ~z5`!52A2t/~21k211k31!Qyz , ~A22!

c8~z5`!52At/kc. ~A23!

The Cauchy boundary condition at infinity has to be d
rived from variational calculus in order to be included in
the relaxation. It is obtained from the bulk energy function
F and a boundary energy functionalF` ,

]F`

]X
1

]F
]X8

50 ~X5c,Qi j !. ~A24!

To obtain this boundary energy functional we insert t
Cauchy boundary conditions~A18!–~A23!, previously de-
rived from the linearized Euler-Lagrange equations, into
variational equation~A24!. This immediately yields the six
partial derivatives of the boundary energy functional,

S ]F`

]Qxx

]F`

]Qyy

D 52
1

2 S 21k211k31 11k211k31

11k211k31 21k211k31
D S Qxx8

Qyy8 D
~A25!

5
1

4 S 21k211k31 11k211k31

11k211k31 21k211k31
D ~A26!

3S AA1B1AA2B AA1B2AA2B

AA1B2AA2B AA1B1AA2B
D

3S Qxx2Svol~sin2 U`2 1
3 !

Qyy1
1
3 Svol

D
5S U V

V UD S Qxx2Svol~sin2 U`2 1
3 !

Qyy1
1
3 Svol

D ,

~A27!

]F`

]Qxy
52Qxy8 5AtQxy , ~A28!

]F`

]Qxz
52 1

2 ~21k211k31!Qxz8 5A1
2 ~21k211k31!t

3~Qxz2Svol sinU` sinU`!, ~A29!

]F`

]Qyz
52 1

2 ~21k211k31!Qyz8 5A 1
2 ~21k211k31!tQyz ,

~A30!
0-6



ra
m

ul

NUMERICAL STUDY OF SURFACE-INDUCED . . . PHYSICAL REVIEW E63 021510
]F`

]c
52kc8, ~A31!

5Aktc. ~A32!

Now the boundary energy functional is obtained by integ
tion, just in the same way a potential field is calculated fro
a given force field in classical mechanics. The final res
quoted in the main text~11!, reads
nto

Re

y

02151
-

t,

F`5 1
2 U~Qxx

2 1Qyy
2 !1 1

3 ~U1V!Svol~Qxx1Qyy!

2Svol sin2 U`~UQxx1VQyy!1VQxxQyy1
1
2 AtQxy

2

1 1
2A 1

2 ~21k211k31!t~Qxz
2 22Svol sinU` cosU`Qxz

1Qyz
2 )1 1

2 Aktc2. ~A33!
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